Bjarne Bygger Batteri – Del 1 – Battericeller

Link: Del 0 – Begynnelsen

Sist editert: 23032024 – Editert, formatert.

Hvorfor velge LifePO4 over andre batterityper?

Våre to vanligste batterier i bruk i dag innen Lithium, er Litium ION og Litium LifePo4. Litium ion finner vi svært ofte i verktøy, nødladere og El-biler. Disse kan ved skade ta fyr. LifePo4 tar ikke fyr, og brenner ikke. Så selv om ION batterier har mere energi, altså flere ampere for størrelsen, så er LifePo4 å anbefale for oss på grunn av sikkerhet.

Battericeller er kjøpt på finn, av en jeg har funnet som trygg selger (Edit: Trodde jeg).  Skal du ha tak i battericeller anbefaler jeg å kjøpe på AliExpress/Ebay om du vil ha det billig.

De kom totalt med frakt på 7.218kr for 4 celler 280Ah LiFePO4. Fikk med 3 Bus Barer, og nok muttere.

Det første som må gjøres, er å sjekke batteriene for skade. Se etter: Inntrykte hjørner, bulkete eller buler i veggene. Disse var i 99% perfekt tilstand.

Deretter bør du sjekke batterienes indre motstand, at den er lik på alle batteriene.

6,49 mOhm på alle 4 batterier

Er det viktig at batteriene har samme indre motstand? Ja, i høyeste grad. Motstanden vil endre seg gjennom batteriets levetid, og kan gi en pekepinn på hvordan batteriet eldes. Skulle det vise seg at en av cellene plutselig har en helt annen indre motstand en de andre, kan det være fornuftig å ta en kapasitetsmåling av cellen for å se om du bør bytte den.

Forskjellig motstand gjør og at batteriet lades opp og ut, ujevnt mellom cellene. Da vil da være denne cellen som stopper ladingen før batteriet har oppnådd den mengden strøm den kunne hatt, og den cellen som har minst lading som stopper utlading fordi den gått tom først.

Så sjekke volt på hver av cellene

3,265v – 3,269v – 3,268b – 3,270v

Pakken er altså på 13,072v før vi begynner å lade. Cellene er i snitt på 3,268 Hva gjør vi med forskjellen? Vi kan parallellkoble batteriene så de utligner seg, eller vi kan la BMSen gjøre jobben med utligning. Dette tar litt lengre tid avhengig av hva slags BMS du kjøper. Den BMSen jeg har valgt for mitt batteri, har en kondensator som flytter 2Amp fra det batteriet med mest strøm, og til det batteriet som har minst strøm. Vanlige BMSer tar strøm og forbrenner det over en motstand. Mer om BMS, og hvorfor BMS senere.

Ikke begynn å lade cellene før du har lest kapitlene om BMS og Batteriboks.

Jeg anbefaler at du kjøper en batteritester først som sist. Kjøp en som lader og tester batterietcellene en for en, først som sist. Du vil svært gjerne ha oversikt over kapasiteten på hver celle så du ikke blir lurt. (Lesson Learned)

La oss finne litt data om cellene.

Romain Rinie har laget en app for Android til å hente ut data om om LiFePO4 celler basert på å scanne en QR-Code som skal være på alle battericeller. Mangler denne QR koden, ville jeg valgt å kjøpe fra en annen leverandør..

https://play.google.com/store/apps/details?id=com.touliloup.batteryqrdecoder

QR kode. Det blå feltet er en sikkerhetsventil for overtrykk i battericellen

Når du leser av informasjonen om batteriet, ta en tusj og skriv dette ned på toppen av cellen. Skriv og kjøpsdato og hvor du fikk det fra. Dette kan komme godt med på et senere tidspunkt.

Ved å scanne alle cellene, og gå inn i (3 prikker oppe i høyre hjørne) history, så får vi en grei oversikt over når cellene er produsert.

Cellene er produsert innenfor samme tidsrom.

Det er greit å slå opp produksjons dato, spesielt om de er kjøpt i Norge, da batterier er ferskvare.

Skriv produksjonsdato på toppen av hver battericelle.

Det er og viktig å få tak i dataarket som hører til dine celler. De data som finnes på dette, er viktig når vi kommer til BMS og dens oppsett.

Jeg fant dataarket som PDF her: https://www.evebattery.de/wp-content/uploads/2021/11/LF280K-Product-Specification.pdf

Alternativt lokal kopi https://www.b4x4.no/wp-content/uploads/2023/04/LF280K-3-2V-280Ah-Product-SpecificationVersion-B-Energiepanda.pdf

La oss finne noen av de viktigste data fra data arket.

  1. Nominal Capacity: Dette er den mengden cellen minst har i kapasitet. Eneste måten å finne ut om dette stemmer, er å bruke et test instrument. Pr i dag er dette noe jeg ikke har, så jeg får ikke testet hver enkelt celle.
  2. Typical voltage: Bare å notere seg, Spenning endrer seg jo mens en lader.
  3. Vet ikke enda, men her kan du lese om det: https://lygte-info.dk/info/Internal%20impedance%20UK.html
  4. Standard Charge and Discharge current: Her er det viktige data. 0.5C betyr at du kan lade og tappe batteriet med (280Ah*0.5C =) 140Ah. Cellen skal lades til MAX 3.65v og ikke lades ut mer en til 2.5v Vi kommer til å snakke om hvordan batteriet skal lades til maks, og så skal spenningen senkes, samt hvor langt ned du kan ta cellen for å begrense skader.
  5. Maximum Charge: Du kan lade og tape batteriet fortere en standard lading og bruk. Det reduserer levetiden på batteriet når du gjør det, men hvordan du bruker batteriet har også med hva dine ønsker og behov er. Litt som å ha store dekk på bilen enda du vet at du bruker mer drivstoff… 1C = 280Ah lading, 2C = 560Ah tapping men da bare i pulser på 30 sec. Dette vil være for eksempel utstyr som krever mye strøm i oppstart, for eksempel vannpumpe, vinkelsliper, Inverter og annet utstyr som krever oppstart.
  6. SOC: Hvor mye bør du lade batteriet opp til max, og hvor mye bør du lade batteriet ut i forhold til de tall vi har sett på lengre oppe (3.65 – 2.5v): 10-90% Dette justerer vi med laderen, i verste fall så vil BMSen stoppe lading/utlading.
  7. Charging temperature: Lithium tåler ikke å bli ladet i kuldegrader! Enkelt og greit. Du lader ikke minusgrader så sant du ikke har varmeputer på batteriet. Mer om varmeputer sendere. Vi bruker BMS til å hindre at batteriet lades når batteriet er under 0 grader. Noen  BMSer stopper batteriet i kuldegrader, og andre hindrer bare lading.
  8. Discharging temperature: Temperaturene du må holde deg innenfor når du bruker batteriet. Det er helt klart at du kan bruke av batteriet selv om det er kuldegrader, men ikke lade det.
  9. Faktisk punkt 11. Self discharge pr month: Det som er viktig her er hva spenning du skal ha på batteriet når det bare står i hylla over 1 mnd.  Lad det ut til mellom 30-50%

Vi har nå lest at batteriet skal holdes mellom 10 og 90%, og spenningen skal være mellom 2,5v og 3.65v Hva spenning skal vi egentlig lade cellen med?

Vi bruker en lader/dc-dc lader/solcellelader beregnet på lithium, og som støter den type kjemi du har. Det er forskjell på lithium ion og LifePO4 (som vi har her)

Ikke begynn å lade cellene før du har lest kapitlene om BMS og Batteriboks.

Absorption spenning: 3.45V i 1-2 timer. Dette er den spenningen som skal stå på til du ser at strømmen synker. I dette tidsrommet vil gjerne BMS’en balansere battericellene.

Float spenning: 3.35V Denne spenningen er den som kan stå på hele tiden fra en lader/strømforsyning. Dette er nivået hver celle skal ned på når batteriet er ferdig ladet.

Mer om hva spenninger vi skal stille inn, kommer i kapitlene om BMS og Batteriboks.

Skal du ikke bruke batteriet på en måned, tapper du det ned til mellom 30 og 50%, for å bevare det bedre.

Husk at vi snakker om battericeller nå. Når vi skal etter hvert skal over på batteriet, så må disse tallene ganges med 4, for å få et 12v batteri.

Kompresjon av cellene. Om vi ser i data arket fra EVE under 5.5, så står det noe om “clamping to 300kgf” for å oppnå maks sykluser (helt oppladet til helt utladet). Mer om dette og hvordan vi oppnår presset finner du under kapittelet “Batteriboks”

6000 sykluser ved maks 140A strømforbruk, og 25 grader C.
Vi finner og toleransen et annet sted i pdf’en

Merk og at temperaturen skal være 25 grader C, ved 45 grader reduseres antall cycles til 2500 stk.

Hvordan skal cellene (batteriet) stå montert? Jeg har alltid trodd at Lithium batterier kan stå alle veier, men det ser ut til at cellene kan stå alle veier men bør ikke legges på siden. Viktig å merke seg om du vil ha batteriet i mange år.

Ikke legg batteriet slik at cellene havner på siden. Beskjed fra EVE.

Ikke lad battericellene før vi har fått dem i en boks med 300kgf. Mer om dette i kapittelet om batteriboks.

Link: Del 0 – Begynnelsen

Link: Del 2 – BMS

AIS – GPS – nmea – wind instruments – Opencpn

This post will be edited as the project evolves.

My dad has a sailboat where the instruments has died.
I have to make some new ones.
Here is my thoughts:

image

In the mast I want to put a box with the following equipment:
Dvb-t for AIS reception.
Link to software
Norwegian edition
ais decoding Norwegian edition

GPS for position acquirement.
image

Nmea wind speed and direction.
image

NMEA masthead Unit(Wind Sensor) Masthead unit sends NMEA 0183 sentences MWV and XDR to meteoman display or other equipment. Complete with 20 metres of cable. Part Number: 44226. Upc: 609722871297.

WiFi transmitter
Raspberry pi to bind them together.

In the cockpit I want the following:
2x 7″ screens.
Raspberry pi
WiFi adapter
Opencpn on 1 screen
Nmea instruments on the other screen

And a wifi router to bind it together.